Why Does Oil Make A Rainbow?

It’s summer, and it’s just finished raining, and we’re walking across a parking lot on our way back to the car from running an errand. My son is, as five-year-olds are wont to do, taking the opportunity to jump in puddles and laugh as they splash. Suddenly, he stops. “Look!” he cries, pointing at the ground. “There’s a rainbow!”

12628571193_a48c198c00_b

I go and look. Sure enough, there’s a small puddle with a thin film of oil slicking the top. I nod at him, and looks at it again. “Why is there a rainbow on the ground?” he asks.

“There’s oil on the puddle.”

He looks at it for a moment, then looks up at me. “How does oil make a rainbow?”

Yeah. You’ve just stumped me son.

So, what’s up?

science

Specifically, PHYSICS!

Could you… elaborate? Just a little?

It all starts with the nature of light, which as we all know is simultaneously a particle and a wave. Here’s how Professor Emeritis Dinesh O. Shah explains it in Scientific American:

Light reflects upward both from the top of the oil film and from the underlying interface between the oil and the water; the path length (the distance from the reflection to your eye) is slightly different depending on whether the returned light comes from the top or from the bottom of the oil film. If the difference in path length is an integral multiple of the wavelength of the light, rays reflected from the two locations will reinforce each other, a process called constructive interference. If, however, the rays reach your eye out of step, they will cancel each other out due to destructive interference.

oil_interfere_e

Sunlight contains all the colors of the rainbow–the famous ROYGBIV (red, orange, yellow, green, blue, indigo, violet). Each color of light has a different wavelength. Hence, a given disparity in the path length will cause constructive interference of certain colors, whereas other colors will not be observed because of destructive interference. Because the oil film gradually thins from its center to its periphery, different bands of the oil slick produce different colors.

Constructive and destructive interference?

Think of the classic sine curve you had to draw (we all had to draw them) when you took algebra or pre-calculus in high school. The wavy line that looks kind of like a snake. That thing. It’s the most common way to represent a wave of any sort, with the height of the “hills” of the wave representing amplitude (how intense the wave is – brightness for light, loudness for sound, and so on) and how close together the “hills” are representing frequency of the wave (how energetic it is).

Now, think hard about that math class. Do you remember what happens if you add two sine waves together? It changes the nature of the wave. Two identical waves will end up dobuling the amplitude (making it brighter or louder), while two utterly opposite waves will flatten the wave into a line. Check out the image below, if that isn’t clear.

interference

The amplitude of the light is how bright it is, so the areas of the puddle where the reflected light interferes constructively you can see it clearly while you can barely see it when the light interferes destructively. The colors shift because the frequency of the reflected light (which determines the color) vary with the thickness of the oil on the water and the angle at which the light hits your eye.

SCIENCE!

Advertisements